28 research outputs found

    Exploring the concept of interaction computing through the discrete algebraic analysis of the Belousov–Zhabotinsky reaction

    Get PDF
    Interaction computing (IC) aims to map the properties of integrable low-dimensional non-linear dynamical systems to the discrete domain of finite-state automata in an attempt to reproduce in software the self-organizing and dynamically stable properties of sub-cellular biochemical systems. As the work reported in this paper is still at the early stages of theory development it focuses on the analysis of a particularly simple chemical oscillator, the Belousov-Zhabotinsky (BZ) reaction. After retracing the rationale for IC developed over the past several years from the physical, biological, mathematical, and computer science points of view, the paper presents an elementary discussion of the Krohn-Rhodes decomposition of finite-state automata, including the holonomy decomposition of a simple automaton, and of its interpretation as an abstract positional number system. The method is then applied to the analysis of the algebraic properties of discrete finite-state automata derived from a simplified Petri net model of the BZ reaction. In the simplest possible and symmetrical case the corresponding automaton is, not surprisingly, found to contain exclusively cyclic groups. In a second, asymmetrical case, the decomposition is much more complex and includes five different simple non-abelian groups whose potential relevance arises from their ability to encode functionally complete algebras. The possible computational relevance of these findings is discussed and possible conclusions are drawn

    Bio-logic: gene expression and the laws of combinatorial logic

    Get PDF
    Original article can be found at: http://www.mitpressjournals.org/ Copyright MIT Press DOI: 10.1162/artl.2008.14.1.121At the heart of the development of fertilized eggs into fully formed organisms and the adaptation of cells to changed conditions are genetic regulatory networks (GRNs). In higher multi-cellular organisms, signal selection and multiplexing is performed at the cis-regulatory domains of genes, where combinations of transcription factors (TFs) regulate the rates at which the genes are transcribed into mRNA. To be able to act as activators or repressors of gene transcription, TFs must first bind to target sequences on the regulatory domains. Two TFs that act in concert may bind entirely independently of each other, but more often binding of the first one will alter the affinity of the other for its binding site. This paper presents a systematic investigation into the effect of TF binding dependencies on the predicted regulatory function of this “bio-logic”. Four extreme scenarios, commonly used to classify enzyme activation and inhibition patterns, for the binding of two TFs were explored: independent (the TFs bind without affecting each other’s affinities), competitive (the TFs compete for the same binding site), ordered (the TFs bind in a compulsory order), and joint binding (the TFs either bind as a preformed complex, or binding of one is virtually impossible in the absence of the other). The conclusions are: 1) the laws of combinatorial logic hold only for systems with independently binding TFs; 2) systems formed according to the other scenarios can mimic the functions of their Boolean logical counterparts, but cannot be combined or decomposed in the same way; and 3) the continuously scaled output of systems consisting of competitively binding activators and repressors can be more robustly controlled than that of single TF or (quasi-) logical multi-TF systems. Keywords: Transcription regulation, Genetic regulatory networks, Enzyme kinetics, Combinatorial logic, Non-Boolean continuous logic, Modelling.Peer reviewe

    βCaMKII regulates bidirectional long-term plasticity in cerebellar Purkinje cells by a CaMKII/PP2B switch mechanism

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise statedPeer reviewe

    25th annual computational neuroscience meeting: CNS-2016

    Get PDF
    The same neuron may play different functional roles in the neural circuits to which it belongs. For example, neurons in the Tritonia pedal ganglia may participate in variable phases of the swim motor rhythms [1]. While such neuronal functional variability is likely to play a major role the delivery of the functionality of neural systems, it is difficult to study it in most nervous systems. We work on the pyloric rhythm network of the crustacean stomatogastric ganglion (STG) [2]. Typically network models of the STG treat neurons of the same functional type as a single model neuron (e.g. PD neurons), assuming the same conductance parameters for these neurons and implying their synchronous firing [3, 4]. However, simultaneous recording of PD neurons shows differences between the timings of spikes of these neurons. This may indicate functional variability of these neurons. Here we modelled separately the two PD neurons of the STG in a multi-neuron model of the pyloric network. Our neuron models comply with known correlations between conductance parameters of ionic currents. Our results reproduce the experimental finding of increasing spike time distance between spikes originating from the two model PD neurons during their synchronised burst phase. The PD neuron with the larger calcium conductance generates its spikes before the other PD neuron. Larger potassium conductance values in the follower neuron imply longer delays between spikes, see Fig. 17.Neuromodulators change the conductance parameters of neurons and maintain the ratios of these parameters [5]. Our results show that such changes may shift the individual contribution of two PD neurons to the PD-phase of the pyloric rhythm altering their functionality within this rhythm. Our work paves the way towards an accessible experimental and computational framework for the analysis of the mechanisms and impact of functional variability of neurons within the neural circuits to which they belong

    26th Annual Computational Neuroscience Meeting (CNS*2017): Part 3 - Meeting Abstracts - Antwerp, Belgium. 15–20 July 2017

    Get PDF
    This work was produced as part of the activities of FAPESP Research,\ud Disseminations and Innovation Center for Neuromathematics (grant\ud 2013/07699-0, S. Paulo Research Foundation). NLK is supported by a\ud FAPESP postdoctoral fellowship (grant 2016/03855-5). ACR is partially\ud supported by a CNPq fellowship (grant 306251/2014-0)

    Stochastic model of template-directed elongation processes in biology

    Get PDF
    Original article can be found at: http://www.sciencedirect.com/science/journal/03032647 Copyright Elsevier Ireland Ltd.We present a novel modular, stochastic model for biological template-based linear chain elongation processes. In this model, elongation complexes (ECs; DNA polymerase, RNA polymerase, or ribosomes associated with nascent chains) that span a finite number of template units step along the template, one after another, with semaphore constructs preventing overtaking. The central elongation module is readily extended with modules that represent initiation and termination processes. The model was used to explore the effect of EC span on motor velocity and dispersion, and the effect of initiation activator and repressor binding kinetics on the overall elongation dynamics. The results demonstrate that (1) motors that move smoothly are able to travel at a greater velocity and closer together than motors that move more erratically, and (2) the rate at which completed chains are released is proportional to the occupancy or vacancy of activator or repressor binding sites only when initiation or activator/repressor dissociation is slow in comparison with elongation.Peer reviewe

    Does CamKII decode ca2+ oscillations?

    Get PDF
    © 2012 Pinto et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons ttribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Oral presentation at CNS 2012Non peer reviewedFinal Published versio

    An elastically tethered viscous load imposes a regular gait on the motion of myosin-V. Simulation of the effect of transient force relaxation on a stochastic process

    Get PDF
    Original article can be found at: http://www.pubs.royalsoc.ac.uk/index.cfmpage=1058--Copyright The Royal Society DOI : 10.1098/rsif.2005.0098Peer reviewe

    Filamentous actin binding enables betaCaMKII to regulate bidirectional plasticity in cerebellar Purkinje cells

    Get PDF
    © 2013 Pinto et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Poster presented at CNS 2013Non peer reviewedFinal Published versio

    The Logic of Gene Regulation

    No full text
    The Logic of Gene Regulatio
    corecore